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TRANSIENT RESPONSE AT THE BOUNDARY OF A
CYLINDRICAL CAVITY IN AN ELASTIC MEDIUM

MICHAEL J. FORRESTAL

Sandia Laboratory, Albuquerque, New Mexico

Abstract-An unbounded, elastic medium with a circular, cylindrical cavity is subjected to a circumferentially
uniform, suddenly applied step pressure pulse at the cavity surface. Formulae for the circumferential stress, radial
displacement, and radial velocity at the cavity wall are developed. These formulae contain only elementary
functions and can easily be used as influence coefficients to determine, by means of Duhamel integrals, the response
produced by an arbitrary pressure pulse.

INTRODUCTION

IN ORDER to explain the first phase in the mechanism of rock blasting, Selberg [IJinvestigated
the transient stress waves emanating from a cylindrical cavity in an elastic medium. A
solution was obtained by using the Laplace-transform method and the inversion integral
theorem. The evaluation of Selberg's solution is cumbersome because the zeros of an
expression containing modified Bessel functions must be located and a line integral along
the negative real axis must be calculated numerically. Selberg presents stress response
data for an elastic medium with Poisson's ratio equal to one-fourth and for pressure pulses
with a step and exponential distributions.

Plane stress solutions for the transient response of an infinite elastic plate subjected to
radial pressure in a circular hole have been given by Kromm [2J and Miklowitz [3]. Kromm's
solution involves a numerical evaluation of Volterra's integral equation of the first kind;
whereas, Miklowitz developed a special Laplace-transform inversion technique. It is
pointed out in [3J that these solutions have application in calculating the tensile circumfer­
ential stresses generated by the unloading mechanism of a stretch elastic plate in which a
circular hole is suddenly punched. The method of characteristics has also been applied to
investigate the propagation of cylindrical waves in plates by Chou and Koenig [4]. All
the above methods of solution require lengthy numerical calculations.

In this analysis, the computational difficulties in Selberg's solution are overcome by
presenting the location of the poles for all values of Poisson's ratio of elastic media and by
noting that the integral along the branch cut can be accurately approximated by an expo­
nential function. Formulae in terms of elementary functions are developed for the circum­
ferential stress, radial displacement, and radial velocity at the cavity wall for a step pressure
pulse. These formulae can be easily used as influence coefficients to determine, by means of
Duhamel integrals, the response produced by an arbitrary pressure pulse.

FORMAL SOLUTION

An unbounded, elastic medium with a circular, cylindrical cavity is subjected to a
circumferentially uniform, step pressure pulse at the cavity surface. The problem is one of
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(2)

(1)

axisymmetric plane strain and only waves of dilatation radiate away from the cavity wall.
Formal integral solutions for the problem are derived in [5J and are also similar to those
derivations presented in [IJ and [3]. The formal solutions for the circumferential stress and
radial displacement at the cavity boundary are

(Jo = _ ~ f+;oo +b [(~)SKo(S)-(~)Kl(S)Jest ds

p 2m -ioo+b [ (1-2V) ]s sKo(s)+~ K1(s)

E(lp~')U ~ 2~iC.·: [ Kr~',dr ]
s K1(s)+ 1-2v sKo(s)

in which

(3)

where a is the cavity radius, b is a small positive number, C1 is the velocity of propagation for
dilatational waves, E is Young's modulus, K n are nth ordered Bessel functions of the second
kind, p is the magnitude of the step pressure pulse, s is the Laplace transform variable,
and v is Poisson's ratio.

RESPONSE FORMULAE FOR PLANE STRAIN

The formal solutions given by equations (1) and (2) are evaluated by considering the
contour shown in Fig. 1. The modified Bessel functions require a branch cut along the
negative real axis, and Selberg [IJ has proved that there are two poles in the complex plane.

iy

FIG. I. Path of integration of the s-plane with two enclosed poles.

Then the integrals in the formal solution can be replaced by an integral around the branch
cut plus 2ni times the residues of the poles. The response formulae consist of the long time
or static solution obtained from the integration around the origin, a damped oscillatory
part from the residues of the poles, and a branch integral along the negative real axis. These
branch integrals are recorded in [5J and were evaluated for four values of Poisson's ratio.
In each case, it was found that these branch integrals could be accurately approximated by
an exponential function. The location of the poles Sl,2 = x ± iy are recorded in Fig. 2, and
accurate formulae for the circumferential stress, radial displacement, and the particle
velocity at the cavity wall can be written in terms of elementary functions in the following



Transient response at the boundary of a cylindrical cavity in an elastic medium 393

.5

\......,
"'\ '\,

\ '\ -x
\ \
\ \

\ \
\ \
\ y
\
\
\-x

--- PLANE-STRAIN

- PLANE-STRESS

.2 .3..

.7

.6

.5

A

3

.2

.I

0
0 .1

FIG. 2. Location of the poles.

form:

0'9 2(1- 2v) eX<p = 1- A 2+B2 (Acosyr+Bsinyr)+CeX!

E(I- v) 2(1- v)(l- 2v) eX! .
u = 1- A2 B2 (Acosyr+Bstnyr)+DeX!

pa +

(4)

(5)

E au - 2(1- 2v) eX!
A 2+B2 [(xA +yB)cos yr+(xB- yA) sin yr]+F eX! (6)

where

A = (l-v)2(x2- y2)+1-2v,

2(1- 2v)A 1
c= -

A 2 +B2 I-v

(7)

(8)

D _ 2(I-v)(I-2v)A
- A2 +B2 -1

F _ 2(1-2v)(xA+yB) 1-2v
- A 2 +B2 +(1- V)2 .

(9)

(10)

RESPONSE FORMULAE FOR PLANE STRESS

Formulae similar to equations (4), (5), and (6) can be obtained for a state of plane stress
by modifying the elastic constants; e.g., see [6]. The plane stress solution is obtained by
replacing v/(l- v) by v, (1- 2v)/(1- v) by 1- v, and C t by c, where C is the propagation
velocity in a thin plate given by c [EIp(l- v2 )]t. For a state of plane stress the response
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formulae at the circular hole are

(Je 2(1- v2
) e t

•

~ = I-~-----(A cos yr +B SIn yor) +C ext (11)
p A 2 +B2

Eu 2(1- v) e>:r .
pa(l+v) = 1- A2+B2 (Acosyr+Bsmyr)+De

Xt
(12)

E au - 2(1 v2) e>"
~ -a A2 B2 [(xA + yB) cos yr +(xB- yA) sin yrJ +F eXt (13)
pc t +

where

B = 2xy (14)

2(1-v2 )A
C = A2 +B2 (1 + v)

D = 2(1-v)A
A2 +B1

F = (1- 2) 2(1- v
2
)(xA +yB)

v + A2 +B2

(15)

(16)

(17)

DISCUSSION AND NUMERICAL RESULTS

Formulae for the circumferential stress, radial displacement, and radial particle velocity
at the boundary of a circular, cylindrical cavity or circular hole for the corresponding
plane stress problem which is subjected to a step pressure pulse were developed. These
formulae contain elementary functions and depend only on the location of the poles in the
formal solution and the elastic constants of the medium. The location of the poles is
presented as a function of Poisson's ratio in Fig. 2.

Response curves for the circumferential stress, displacement, and velocity at the cavity
boundary for Poisson's ratio v = 0,0'25,0'40,0'45 are presented in [5]. For a state of plane
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FIG. 3. Circumferential stress at cavity boundary.
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stress the same quantities at the boundary of the hole are given for v = 0, 0'30, 0·50. As
previously mentioned, the approximation of the branch integrals by exponential functions
is extremely accurate. In fact, no differences beween the exact solution and the formulae
given by equations (4), (5), (6) and (11), (12), (13) could be observed in the plotted results.
For brevity, only the circumferential stress at the cavity wall are presented; this data is
presented in Fig. 3. Response data for other pressure pulses can be calculated by using
equations (4), (5), (6) and (11), (12), (13) as influence coefficients.
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A6cTpaKT-BeCKOHe'lHOe ynpyroe TeJIO c KpyrJIoJ:i l.\HJIHHAPH'IeCKolt nOJIOCThlO, HaXOAIfTClI nOA BJIHllHHeM

BHe3anHO nplfJIOlKeHHOro, nOCTOllHHoro Ha OKPYlKHOCTH, llMnYJIhCHOrO AaBJIeHHlI Ha noaepXHOCTH nOJI­

OCTH. BhlBOAlITCli lPOPMYJIhI AJIll OKpylKHoro HanplllKeHHlI, paAHaJIbHOrO nepeMeUleHHlI H paAHaJIbHOH

CKOPOCTll Ha noaepXHOCTH nOJIOCTH. 3TH lPOPMYJIbt cop;eplKaT TOJIhKO 3JIeMeHTapHhle lPYHKI.\HH, H MorYT

6hITb JIerKO Hcnonb30BaHhI, KaK BJIHlIHlle K03lPlPHl.\HeHTOB, Anll onpeAeneHHlI, B CMbICJIe HHTerpanOB

)l,lOaMenll, peaKI.\IlH, C03AaHHOH npOH3BonbHhIM llMnynhcoM AaBJIeHHlI.


